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Calculated Bond Length in Some Cyclic Compounds. Part I .  
Methods of Calculation. 

By T. H. GOODWIN and V. VAND. 

[Reprint Order No. 5900.1 

A description is given of new methods of expanding secular determinants 
and solving the resulting equation for the energy levels in molecular-orbital 
calculations of bond orders as well as for evaluating the secular coe5cients 
(c,q. A new curve for correlating bond order and bond length is also proposed. 

A refinement of the simplest valency bond counting method is described 
and a correlation curve for use with i t  is suggested. 

DETERMINATIONS of the crystal structures of condensed ring compounds made in these 
laboratories under the direction of Professor J. M. Robertson have established the bond 
lengths in many such substances with considerable or very great accuracy. Complemen- 
tary to these practical investigations have been wave-mechanical studies of the theoretical 
values to be expected for the bond orders and hence for the bond lengths in some of the 
compounds examined by X-rays [see, for example, Coulson, Daudel, and Robertson (Proc. 
Roy. Soc. , 1951, A ,  207,306) who discuss the results for naphthalene, anthracene, coronene, 
ovalene, pyrene, etc. , and Coulson (ibid., p. 91)]. In the present series of papers calculations 
are presented on a number of substances. For some of them the interatomic distances have 
already been measured and so can profitably be compared with the calculations. For 
others the calculations have been made in the hope of using the resulting bond lengths in 
setting up molecular models for use in refining the crystal structures. This first Part 
describes what are believed to be new methods of carrying out the calculations for very large 
molecules, of which benzanthrone, to which the technique was first applied, may be taken 
as typical. 

MOLECULAR-ORBITAL CALCULATIONS 
Benzanthrone (I), C,,H,,O, has 18 x-electrons, and the 18 secular equations 

2c$(Hrs - ES,,) = 0 . . . . . . . . (1) 
were set up in the usual way. 

As the determinant A formed by the coefficients of the c,' is of the eighteenth order and has 
no simplifying symmetry, inclusion of overlap would greatly increase the labour of evaluating 
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the coefficients c,' of the nofmaliSed atomic orbitals 6 making up the molecular orbitals t,bi = 
>$+ and so it was decided that the overlap integrals Srs = JMsdr should be placed equal to 

zero, except for S,  = 1. The following further simplifications were adopted : for all carbon 
atoms the Coulomb integral Hw = a; resonance 
integrals H ,  between adjacent Carhn atoms = p, between adjacent carbon and oxygen atoms = 
28, between other atoms = 0. The molecular orbital energy levels Ei were obtained in terms 
of p by writing xi = (a - EJ/p  and solving the equation A = 0. 

This and subsequent stages of the work are very conveniently carried out by use of 

r 

for the oxygen atom H,,,,, = a + p; 



1684 Goodwin and V a n d :  Calculated Bond Lengths in 
determinants of the variety known as continuants of which P,, in inset ( A ) ,  is an example. 
following are some properties of continuants which are useful for the present purpose : 

The 

and may also be written as 

P, = ~ [ C O S  n0 + cos (TZ - 2)e + 

(n - 2) (n - 3) 
1 . 2  

cos (n - 4)0 + 

xn-1. . . . . . . . .  

. . . . .  (cos 0 or i)] . 
according as n is odd or even. This transformation depends on the substitution x = 2 cos 8 and 
means that a sum of continuants aP, + bPm + . . . . . .  can readilybe expressed as a Fourier 
series and so evaluated very rapidly by any of the strip, stencil, or other methods (e.g., Lipson 
and Beevers, Proc. Phys. SOL, 1936, 4$, 772; Acta Cryst., 1952, 5, 670; Robertson, Phil. Mag., 
1936, 21, 176; J .  Sci.  Instr., 1948, 25, 28) used by crystallographers and others for computing 
Fourier syntheses, provided the argument x (cos 0) lies between &2 ( f 1). 

The expansion of the determinant A is, then, carried out by expressing it as a sum 
of continuants since i t  is, in fact, a continuant with various ‘ I  decorations,” viz., the terms not 
on the leading and immediately adjacent diagonals and such of these terms as are not x (leading 
diagonals) or 1 (adjacent diagonals). If there are decorations, b, in the original determinant a t  
(pq )  and (qp) ,  i.e., at  the intersections of column p with row q and of column q with row 9, then 
one of these (say that a t  pq)  may be removed by writing 

. . . . . . . .  A = Atl + ( - l ) P + q  bA’2 (8)  

where A’l is derived from A by suppressing the b at  (pq) and A’, is the minor of the b at  (pp) in 
A. To remove both b’s simultaneously write 

. . . . . . .  A = A1 + 2( - l ) P + q  bA2 - b2A3 ( 9) 

where A1 is derived from A by suppressing both b’s, A, is the minor of the b at  (pq)  in A but with 
the b at  (qp) also suppressed, and A, is the “ double minor ” of the b’s, i.e., columns p and q and 
rows 9 and q of A are all suppressed. Note that if A is of order n, so are Al and A‘l ; A, and A’, 
are of order n - 1, and A3 is of order n - 2. Also A1 and A, are, like A, axially symmetrical 
but A, is not. A, is, however, often found to be immediately factorised and is frequently zero. 
If not zero it or its factors may be treated by (8 )  to break it up further ; factors are multiplied 
out by means of (3). This process is repeated until 
all “decorations” have been removed. Thus, in quite a short time the eighteenth order 
determinant of benzanthrone was expanded to 

A1 and A, are of course treated as in (9). 

a simpler form than the equivalent 

XU + xl’ - 2 4 ~ ’ ~  - 2Oxw + 233x14 + 161x13 - 1197%” - 6 8 1 ~ ~  + + 3571%’’ + 1655%’ - 6391x8 - 2367x7 + 68319 + 1947+ - 4170x4 + 
- 842x3 + 1290x2 + 146% - 144 = 0 . (11) 

An important feature of all work of this kind is the application of checks on accuracy. When 
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the method of continuants is used these are particularly simple, as the following table of values 
of P,, for x = 0, 1, 2 shows : 

x n :  0 1 2 3 4 5 6 7 8 
0 1 0 -1 0 1 0 -1 0 1 
1 1 1 0 -1 -1 0 1 1 0 
2 1 2 3 4 5 6 7 8 9 

Also P d x )  = +Par( - 4, and Pzr+ = -Pzr + x )  

Expansion (10) having been reached, inspection shows that ( x  - 1) and ( x  + 1) and there- 
Since P, = xa - 1 these factors are removed by 

Actually P, can also be removed again and finally ( x  + 1) which is written 

The remaining thirteenth-order equation, R, is then solved by writing it as a Fourier series 
by use of (7) and summing and plotting it between 8 = 0 and x ( x  = f2). The nodes of this 
curve are a t  those roots of R which lie between x = f2 but will only be given approximately by 
this method. To obtain them more accurately an iterative process is used. The values of P,, 
for 0 < n < 13 were calculated by (2) and checked by (6), using Homer’s method. These 
results are then used to evaluate accurately R and its derivatives R’ and R” at  the approximate 
values of the roots ; application of Taylor’s theorem in the form 

fore (x2 - 1) are factors of the left-hand side. 
division, using (3). 
as PI + Po. 

gives, to this approximation, the increment h by which x may be increased to get a better value 
of the root for further iteration. 

in units of which x is obtained is negative, only the negative roots of R 
are required in studying the ground state of the molecule. The rest may, of course, be obtained 
to use as a check on their correct extraction. To determine the roots lying outside the limits 
x = f2 the accurate factors were removed from R and the residue, a function containing P,, 
was examined by a combination of guess work, Taylor’s theorem, and experience. The last 
shows that for hydrocarbons nearly all the roots are between + 2 and - 2 and so the Fourier 
technique described above is very helpful. It becomes less useful as the compound contains 
more and more heteroatoms. 

The c,‘ are also easily evaluated by means of continuants as may readily be illustrated by 
means of the simple example of benzene, the secular equations of which are those indexed a tof 
below. 

Since the parameter 

C l  C¶ c3 c4 cc C6 

a x 1 0 0 0 1 = 0 a - xb givesg 
b 1 x 1 0 0 0 = 0 b - xc givesi  
c 0 1 x 1 0 0 = 0 c - xd gives1 
d 0 0 1 n 1 0 = o  
C 0 0 0 1 x 1 = o  

1 0 0 0 1 x = 0 f - b gives h 
0 -pa --PI 0 0 1 = 0 g + P,c gives j 

f 
h + P , c  gives R 

g 

p6 = 0 i + P,dgivesm 
h 0 --PI -PO 0 PO 
a 1 0 --P¶ -PI 0 

0 0 p3 P¶ @ Po = 0 
0 0 P¶ 

i 
z 0 1 0 -p¶ 
m 1 0 0 p3 p, 0 - 0  

= 0 

= o  
PI -2 p6 = o  k 

The object is to write a simple expression for each coefficient in terms of as few others as possible 
and the method is sufficiently illustrated by the notes given beside the equations. The final set 
of equations is given as p to u from which it is seen that they are in fact relatively simple to write 
down and a simple equation gives t5 in terms of c6 and the rest simiarly. Incidentally the 

C l  ct cs c4 c&i c* 
1 = o  

-PI = o  0 0 0 1 PI 
0 0 1 (I -p* 

P 
r P, = 0 
4 
S -P3 = o  0 1 0 0 p3 

1 0 0 0 -p4 
t 0 0 0 0 P, 1 + P 4  = o  
u 0 0 0 0 l + P , P 3 + P ,  = o  

determinant of the coefficients of cs and t6  in t and u is equivalent to the secular 
determinant A. The larger set of equations for benzanthrone is given in (13) in which 
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0 0 = O ’  

0 0 = o  
0 0 = o  
0 0 = o  
0 0 = o  
1 0 = o  
0 0 = o  
0 0 = o  
0 0 = o  
0 0 = o  
0 0 = o  
0 0 = o  
0 0 = o  
0 0 = o  
0 0 = o  
0 0 = o  
0 -2 = o  
2 P , + 1 = 0 4  

A =Pa -P4 - 1; B = -(Ps + PI);  C = P ,  + Pd + 1; D =  P7 + P3; E = P, + 2P3 + PI; 
F = -P7 + P, + P, + P,; G = P, + 2P,; H = -Pa + P, + P,. Hence, from equations 
f, h, i, q, Y and a Table of P, for x = the root, the values of c5, C6, c7, c17, c18 for each energy 

‘1 ‘2 ‘3 ‘4 ’6 ‘6 ‘7 ‘P ‘10 ‘11 ‘11 ‘I3 ‘14 ‘16 c16 
( a ) O O 0 0  P , P 4  0 0 0 0 0 0 0 0 0  P4 

(b)  1 0 0 0 -P4 -P3 0 0 0 0 0 0 0 0 0 -P, 
( C ) O 1 0 0  P, P, 0 0 0 0  0 0 0 0 0 P, 
( d )  0 0 1 0 -P, -P, 0 
(e) 0 0 0 1 P, 1 0 0 0 0 0 0 0 0 0  
( f ) O O O O  P4 P, 0 0 0 0  0 0 0 0 0 P, 

( g ) 0 0 0 0 0  0 P, 1 0 0 0 1 0 0 0  1 
( h ) O O O O  A B C 0 0 0 0 0 0 0 OP,-P,  
( z ) O O O O  D 0 E 0 0 0 0 0 0 0 0  c 
(R) 0 0 0 0 -P5 0 -P , -P1O 0 1 0 0 0 0 0 -P, 
(1) 0 0 0 0 P4 0 P 4 + l  0 0 0 1 0 0 0 0 P, 

0 0 0 -P, 0 -P3 0 0 0  0 1 0  0 0 -P4 

0 0 0  0 0 0 1 0  -P, 
0 0 0 0 0 0 0  0 1 PI 

+ 1  

+ 1  + P I  

( j )  0 0 0 0 P6 0 P,$-P, 0 1 0 0 0 0 0 0 P, 

tn”,’ : 0 0 0 P, 0 P, 0 0 0 0 0  1 0  0 P, 

0 0 0 0 0 0 0 0  H 
(PI 0 0 0 0 

( Y ) O O O O  0 0 0 0 0 0 0 0 0 0 0  0 
( 4 ) O O O O  F G - D  

level can be expressed in terms of c16. From these the rest are readily obtained also in terms of t16 
and then evaluated by use of the normality condition Z(C:)~ = 1 and the orthogonality condition 

z(c:crj)  = 0. The electron distribution q and mobile bond orders p can then be deduced from 
r 

r 

and 

summation being over all the occupied energy levels, usually with n = 2 electrons in each. 

points : 
To determine the bond lengths L, reference was made to a curve drawn through the following 

Mobile bond order Bond length 
D Diamond corrected to spz hybridisation ........................ 0 1-50 
G Graphite ............................................................... 0-525 1-421 
B Benzene ............................................................... 0-667 1.39 
E Ethylene ............................................................... 1.00 1-34 

This curve (Fig. 1) is almost rectilinear and so interpolation is simple. The arguments for the 
diamond point are given by Coulson (Victor Henri Memorial Volume, “ Contribution A l’Gtude 
de la Structure Moleculaire,” Desoer, LiGge, 1948) ; the others are long established. However, 
Cox and Smith’s work (Naluve, 1954, 173, 75) suggests a benzene point of (0-667, 1-378) with an 
uncertainty of 0.003 A in the bond length. This measurement, made on crystals at -3”, is 
significantly different from Stoicheff’s value 1.396-1-401 A ( J .  Chem. Phys., 1953, 21, 1410) 
derived from Raman spectrum data on the vapour at 61”. Even after allowance for the difference 
of state this discrepancy is so great that temporary use of the old intermediate value of 1.39 A 
seems to be the correct course. 

Alternatively, conversion of bond orders into bond lengths might be effected by useof 
Coulson’s “ best correlation curve ” (Proc. Roy. Suc., 1951, A ,  207, 95, Fig. 26) which is derived 
from the generally very accurate measurement of thirty-six distinct bond lengths in nine 
hydrocarbons, the bond orders being obtained by the molecular-orbital approximation. This 
curve (Fig. 1) passes through the points (measured from the figure) (0-466, 1-46) ; (0.5, 1.443) ; 
(0-6, 1-406) ; (0.7, 1-378) ; (0.8, 1-361) ; (0.9. 1.351) ; (1.0, 1-34). Unfortunately the extrapol- 
ation of this to mobile bond orders lower than 0-4, such as are obtained for some of the 
compounds to be discussed, is not practicable as i t  would lead to a length of ca. 1-495 for order 
0.4 and ca. 1.58 for order 0-3. However, by using the same parameters as for benzanthrone, it 
is found that in benzoquinone the bonds adjacent to the keto-group have mobile orders of 
0.310 and, according to the measurement reported by Robertson (PYOC. Roy. SOC., 1935, A ,  150, 
106), a length of 1-50. This value, obtained twenty years ago, is not, of course, known with the 
precision of modern measurements. It is, therefore, being measured again in this Department 
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but. in the meantime, we may recognise that it is reliable to within a few hundreds of an 
Angstrom. In  particular if we take its length to be 1-485A the Coulson curve may be 
extrapolated through (0-310, 1.485) to (0, 1.50) to provide a graph for correlations at low order 
to within a few hundredths of an Angstrom unit. 

Throughout this series of papers, therefore, bond lengths wi l l  be described as L, when 
derived from the curve DGBE and as L, when derived from the Coulson curve extended through 
benzoquinone Q to diamond. The latter curve will be called DQCE. This extrapolation is 
rather arbitrary but fortunately orders less than 0-5 are seldom required and unfortunately there 
are no other points available. Nowhere do these two curves dif€er by more than 0-026 A and 
in the most important region (orders greater than 0.55) by more than 0.008 A. 

It is of interest that graphite (0-525, 1-421) lies below this curve by about 0.01 8, and the 
benzene point B above it by 0-005 A while the newer crystallographic benzene point is below it 
by 0.008A. It is also clear that benzene and graphite are unsatisfactory standards for 
correlating orders and lengths in polycyclic compounds since graphite, considered as an infinite 
sheet has no ‘‘ edge effects,” i.e., no carbon atoms linked to only two others, while benzene is all 

FIG. 2. Correlation curues for second valence-bond 
FIG. 1. 
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Correlation cuwes for molecular-orbital method. 
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edge effects, i .e.,  has no carbon atoms linked to three others. It amounts to the same thing to 
say that the approximations used in calculating bond orders are, in fact, too naive to cover all 
types of compound adequately. 

The correlation of orders and lengths for C=O is much less satisfactory, as Cox and Jeffrey 
have pointed out (ibid., 1951, A ,  207, 110). For the compounds discussed in this paper a linear 
interpolation has been made between 1.185 A for a double bond and 1.437 8, for a single bond on 
the basis of data given by these authors, but with the note that the calculated bond order of a 
pure double bond is 0-895 A as shown by Coulson (Tvans. Faraday SOC., 1946, 42, 106). As the 
orders calculated are all greater than 0-85 the uncertainties are not very serious. For C-N bonds 
Cox and Jeffrey’s linear correlation curve (Zoc. cit., p. 115) was used. 

VALENCE-BOND CALCUL-4TIONS 
Calculations by the valence-bond method have been made by the two simplest approxim- 

ations. In the first of these (Pauling, Brockway, and Beach, J .  Amer. Chem. SOC., 1935, 57, 
2705) only unexcited canonical structures were included. It follows that bonds 5-16, 6-17, and 
8-17 (see I) of benzanthrone are necessarily single bonds so that ring 1,2,3,4,5,6 can have only 
the two canonical structures of benzene while the double ring 7,8,9,10,11,12,13,14,15,16 must 
have the three of naphthalene. By counting N ,  the number of times a given bond is double in 
the total of six structures, the bond order p is obtained as Nj6 whence Pauling’s correlation curve 
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(" Nature of the Chemical Bond," Cornell Univ. Press, New York, 1945, p. 174) modified for 
the spa diamond leads at once to the bond lengths L,. 

In  the second valence-bond approximation unexcited and first excited structures, i .e . ,  
structures with not more than one long bond, were included] with the proviso that no long 
bond should traverse more than two rings. There are fifty-four such structures, including the 
six referred to in the previous paragraph, and by the method indicated there the orders are 
readily obtained, equal weights being given to unexcited and excited structures. The authors 
know of no established order-length curves for use with such calculations and i t  is difficult to 
set up one using graphite as one of the standards. To get over this difficulty the corresponding 
calculations were made on naphthalene (11) and anthracene (111) for use with the measurements 

(Bond symbolism used for mathematical calculations.) 

made by Abrahams, Robertson, and White (Acta Cryst., 1949, 2, 238) and by Sinclair, Robertson, 
and Mathieson (ibid. ,  1950, 3, m ) ,  respectively, on these compounds. Additional points were 
diamond (0, 1-50), benzene (0.4, 1-39), and ethylene (1.0, 1-34) and the results are shown in the 
Table and in Fig. 2. To check 
this computations were made for coronene (IV) in the same way, for comparison with the 
measurements by Robertson and White (J . ,  1945, 607); these are also given in the Table. 

Mobile bond orders (p) calculated by second valence-bond approximation, and 
observed bond lengths (L) i n  napkthaleize, anthracene, and coronene. 

The broken curve was drawn first as the best then possible. 

Naphthalene 
Bond P I  L 
a 0.42 1 1.359 
b 0.367 1-420 
c 0.431 1.395 
d 0-158 1-395 
e - - 

- - f 

Anthracene Coronene 

0.500 1.364 0.573 1.385 
0.357 1.419 0-328 1.415 
0.405 1-390 - - 
0.215 1.440 0.311 1.430 
0.357 1-391 - - 

_. 0-305 1 ~ 4 3 0  

P 4  L P 4  L 

- 

Every point for this compound lay above the broken curve, so the full curve was drawn. 
passes through (0, 1-50) ; (0.2, 1-445) ; (0.4, 1-393) ; (0.6, 1-369) ; (0.8, 1.353) and (1.0, 1.34). 

It 

DISCUSSION 
As to the general reliability of the molecular-orbital calculations, Coulson (Proc. ROJJ. 

SOC., 1951, A , 207, 91) and Coulson, Daudel, and Robertson (Zoc cit.) show that for aromatic 
hydrocarbons both molecular-orbital calculations and good X-ray work permit the estim- 
ation of bond lengths to about 0-02 A, and that the results obtained by the two methods 
agree within the same limits. Coulson (Zoc. cit.) also indicates that for hetero-molecules the 
agreement is not generally closer than SO-05 A, but this will clearly depend on the pertur- 
bations caused by the hetero-atoms. Thus benzanthrone, considered in Part 11, contains 
one hetero-atom out of eighteen supplying x-electrons. I t  is thus essentially a large 
aromatic hydrocarbon with a local perturbation. The molecular-orbital calculations ought, 
therefore, to be accurate to &0-03 A except, perhaps, for the C-C bonds attached to the 
keto-carbon atom, for which the order-length curve is less reliable. With more hetero- 
atoms or fewer carbon atoms the uncertainty is likely to be greater and so will be discussed 
for each compound in turn (see following paper). 
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